Vincent Studer, P-O Strale et al. dans Advanced Materials
Multiprotein Printing by Light-Induced Molecular Adsorption. Strale PO, Azioune A, Bugnicourt G, Lecomte Y, Chahid M, Studer V. Adv Mater . 2015 Dec 21. doi: 10.1002/adma.201504154. [Epub ahead of print]
Vincent Studer: Fast, affordable and reproducible cell patterning technologies are required for the future development of high-throughput cells-based assays and tissue engineering. In our paper published in Advanced Materials, we describe how to perform high resolution, multi-adhesion protein micro-patterning using a new technology named “Light-Induced Molecular Adsorption” (LIMA) allowing an exquisite control over different cell types populations positioning. Our LIMA method is based on a water-soluble photo-initiator which is able to reverse the antifouling property of polymer brushes when exposed to UV light.
We showed that the density of adsorbed molecules scales almost linearly with the dose of UV light. LIMA is also well adapted to wide field illumination schemes, consequently micron-scale patterns where adhesion proteins can adsorb, are printed within seconds. Moreover, the very low background of these patterns allows for the sequential printing of multiple proteins. Our optical set-up (widefield DMD-based projection system coupled to a conventional epifluorescence microscope) allows us to generate arbitrary grayscale patterns of UV light and thus controlled gradients of multiple biomolecules. As a demonstration of the robustness of LIMA protein printing, we reproduced “the birth of Venus” of Botticelli by superimposing complex patterned of three different fluorescent molecules (see below , zoomable picture).
A: Principle of the LIMA method allowing for orthogonal patterning of two different fluorescent proteins as shown in B. Scale Bar = 50 µm. C: Epifluorescence image of a eproduction “of the Birth of Venus” by sequential of printing of three different fluorescent molecules. Scale Bar = 100µm.
We showed that the range of application of our LIMA system extends from the single molecule up to the multicellular scale: micropatterns of individual fluorescent molecules provide a tool for the quantitative study of biomolecular interactions. At larger scale, the ability to rapidly generate complex and dynamic protein landscapes enable studies of single cell dynamics, and of cell-cell and cell-matrix interaction.
Altogether, light-induced molecular adsorption of adhesion proteins provides a generic method for fast, high resolution patterning of multiple proteins allowing unmatched orthogonal cell printing capabilities, which turn LIMA into a very powerful method for multi-scale co-culture with straightforward applications in tissue engineering and biomedical research.
Contact: CR1/ PhD / CNRS /IINS/ Quantitative Imaging of the Cell group/ vincent.studer at u-bordeaux.fr
Dernière mise à jour le 18.02.2016
First author
Pierre-Olivier Strale, post-doctorant (LabEx Brain) Team: Quantitative Imaging of the Cell group.
Institut Interdisciplinaire de Neurosciences (Daniel Choquet)
Adsorption
L’adsorption, à ne pas confondre avec l’absorption, est un phénomène de surface par lequel des molécules de gaz ou de liquides se fixent sur les surfaces solides des adsorbants. Les molécules ainsi adsorbées constituant l’adsorbat. Si les conditions énergétiques ou cinétiques permettent à la molécule de pénétrer au sein de la phase adsorbante, il y a absorption.
Le terme d’adsorption a été proposé par Kayser au début du 20ème siècle pour désigner une absorption qui ne se fait qu’en surface du solide, sans pénétration. L’adsorption physique se fait par des forces d’interactions physiques. Elle se produit sans modification de la structure moléculaire et est parfaitement réversible. Dans le cas de l’adsorption chimique, il y a réaction chimique entre l’adsorbant et l’adsorbat. L’énergie mise en jeu est alors une énergie de liaison et le processus est alors beaucoup moins réversible, voire souvent irréversible. Le phénomène d’absorption est parfois répertorié sous le terme de sorption.
Mise à jour: 05/01/21