Sleep Health Analysis Through Sleep Symptoms in 35,808 Individuals Across Age and Sex Differences: Comparative Symptom Network Study
JMIR Public Health Surveill. 2024-06-11; 10: e51585
DOI: 10.2196/51585
Read on PubMed
Background
Sleep health is a multidimensional construct that includes objective and subjective parameters and is influenced by individual sleep-related behaviors and sleep disorders. Symptom network analysis allows modeling of the interactions between variables, enabling both the visualization of relationships between different factors and the identification of the strength of those relationships. Given the known influence of sex and age on sleep health, network analysis can help explore sets of mutually interacting symptoms relative to these demographic variables.
Objective
This study aimed to study the centrality of symptoms and compare age and sex differences regarding sleep health using a symptom network approach in a large French population that feels concerned about their sleep.
Methods
Data were extracted from a questionnaire provided by the Réseau Morphée health network. A network analysis was conducted on 39 clinical variables related to sleep disorders and sleep health. After network estimation, statistical analyses consisted of calculating inferences of centrality, robustness (ie, testifying to a sufficient effect size), predictability, and network comparison. Sleep clinical variable centralities within the networks were analyzed by both sex and age using 4 age groups (18-30, 31-45, 46-55, and >55 years), and local symptom-by-symptom correlations determined.
Results
Data of 35,808 participants were obtained. The mean age was 42.7 (SD 15.7) years, and 24,964 (69.7%) were women. Overall, there were no significant differences in the structure of the symptom networks between sexes or age groups. The most central symptoms across all groups were nonrestorative sleep and excessive daytime sleepiness. In the youngest group, additional central symptoms were chronic circadian misalignment and chronic sleep deprivation (related to sleep behaviors), particularly among women. In the oldest group, leg sensory discomfort and breath abnormality complaint were among the top 4 central symptoms. Symptoms of sleep disorders thus became more central with age than sleep behaviors. The high predictability of central nodes in one of the networks underlined its importance in influencing other nodes.
Conclusions
The absence of structural difference between networks is an important finding, given the known differences in sleep between sexes and across age groups. These similarities suggest comparable interactions between clinical sleep variables across sexes and age groups and highlight the implication of common sleep and wake neural circuits and circadian rhythms in understanding sleep health. More precisely, nonrestorative sleep and excessive daytime sleepiness are central symptoms in all groups. The behavioral component is particularly central in young people and women. Sleep-related respiratory and motor symptoms are prominent in older people. These results underscore the importance of comprehensive sleep promotion and screening strategies tailored to sex and age to impact sleep health.