GLP-1-mediated delivery of tesaglitazar improves obesity and glucose metabolism in male mice

Carmelo Quarta, Kerstin Stemmer, Aaron Novikoff, Bin Yang, Felix Klingelhuber, Alex Harger, Mostafa Bakhti, Aimee Bastidas-Ponce, Eric Baugé, Jonathan E. Campbell, Megan Capozzi, Christoffer Clemmensen, Gustav Collden, Perla Cota, Jon Douros, Daniel J. Drucker, Barent DuBois, Annette Feuchtinger, Cristina Garcia-Caceres, Gerald Grandl, Nathalie Hennuyer, Stephan Herzig, Susanna M. Hofmann, Patrick J. Knerr, Konxhe Kulaj, Fanny Lalloyer, Heiko Lickert, Arek Liskiewicz, Daniela Liskiewicz, Gandhari Maity, Diego Perez-Tilve, Sneha Prakash, Miguel A. Sanchez-Garrido, Qian Zhang, Bart Staels, Natalie Krahmer, Richard D. DiMarchi, Matthias H. Tschöp, Brian Finan, Timo D. Müller
Nat Metab. 2022-08-22; 4(8): 1071-1083
DOI: 10.1038/s42255-022-00617-6

PubMed
Read on PubMed



Dual agonists activating the peroxisome proliferator-activated receptors alpha and gamma (PPARɑ/ɣ) have beneficial effects on glucose and lipid metabolism in patients with type 2 diabetes, but their development was discontinued due to potential adverse effects. Here we report the design and preclinical evaluation of a molecule that covalently links the PPARɑ/ɣ dual-agonist tesaglitazar to a GLP-1 receptor agonist (GLP-1RA) to allow for GLP-1R-dependent cellular delivery of tesaglitazar. GLP-1RA/tesaglitazar does not differ from the pharmacokinetically matched GLP-1RA in GLP-1R signalling, but shows GLP-1R-dependent PPARɣ-retinoic acid receptor heterodimerization and enhanced improvements of body weight, food intake and glucose metabolism relative to the GLP-1RA or tesaglitazar alone in obese male mice. The conjugate fails to affect body weight and glucose metabolism in GLP-1R knockout mice and shows preserved effects in obese mice at subthreshold doses for the GLP-1RA and tesaglitazar. Liquid chromatography–mass spectrometry-based proteomics identified PPAR regulated proteins in the hypothalamus that are acutely upregulated by GLP-1RA/tesaglitazar. Our data show that GLP-1RA/tesaglitazar improves glucose control with superior efficacy to the GLP-1RA or tesaglitazar alone and suggest that this conjugate might hold therapeutic value to acutely treat hyperglycaemia and insulin resistance.

Know more about