Dopamine D2-Like Receptors Modulate Intrinsic Properties and Synaptic Transmission of Parvalbumin Interneurons in the Mouse Primary Motor Cortex.
eNeuro. 2020-04-22; 7(3): ENEURO.0081-20.2020
DOI: 10.1523/eneuro.0081-20.2020
Lire sur PubMed
Cousineau J(1)(2), Lescouzères L(1)(2)(3), Taupignon A(1)(2), Delgado-Zabalza L(1)(2)(4), Valjent E(5), Baufreton J(1)(2), Le Bon-Jégo M(6)(2).
Author information:
(1)Université de Bordeaux, Institut des Maladies Neurodégénératives, Unité Mixte de Recherche 5293, Bordeaux F-33000, France.
(2)Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Unité Mixte de Recherche 5293, Bordeaux F-33000, France.
(3)Institute for Neuroscience of Montpellier, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier 34091, France.
(4)University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa 48940, Spain.
(5)Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale,
University of Montpellier, Montpellier 34094, France.
(6)Université de Bordeaux, Institut des Maladies Neurodégénératives, Unité Mixte de Recherche 5293, Bordeaux F-33000, France .
Dopamine (DA) plays a crucial role in the control of motor and higher cognitive functions such as learning, working memory, and decision making. The primary motor cortex (M1), which is essential for motor control and the acquisition of motor skills, receives dopaminergic inputs in its superficial and deep layers from the midbrain. However, the precise action of DA and DA receptor subtypes on the cortical microcircuits of M1 remains poorly understood. The aim of this work was to investigate in mice how DA, through the activation of D2-like receptors (D2Rs), modulates the cellular and synaptic activity of M1 parvalbumin-expressing interneurons (PVINs) which are crucial to regulate the spike output of pyramidal neurons (PNs). By combining immunofluorescence, ex vivo electrophysiology, pharmacology and optogenetics approaches, we show that D2R activation increases
neuronal excitability of PVINs and GABAergic synaptic transmission between PVINs and PNs in Layer V of M1. Our data reveal how cortical DA modulates M1 microcircuitry, which could be important in the acquisition of motor skills.