Left-handedness and its genetic influences are associated with structural asymmetries mapped across the cerebral cortex in 31,864 individuals

Zhiqiang Sha, Antonietta Pepe, Dick Schijven, Amaia Carrion Castillo, James M. Roe, René Westerhausen, Marc Joliot, Simon E. Fisher, Fabrice Crivello, Clyde Francks
. 2021-07-16; :
DOI: 10.1101/2021.07.16.452594


AbstractRoughly 10% of the human population is left-handed, and this rate is increased in some brain-related disorders. The neuroanatomical correlates of hand preference have remained equivocal. We re-sampled structural brain image data from 28,802 right-handers and 3,062 left-handers (UK Biobank population dataset) to a symmetrical surface template, and mapped asymmetries for each of 8,681 vertices across the cerebral cortex in each individual. Left-handers and right-handers showed average differences of surface area asymmetry within fusiform, anterior insular, anterior-middle-cingulate and precentral cortex. Meta-analyzed functional imaging data implicated these regions in executive functions and language. Polygenic disposition to left-handedness was associated with two of these regional asymmetries, and 18 loci previously linked with left-handedness by genome-wide screening showed associations with one or more of these asymmetries. Implicated genes included six encoding microtubule-related proteins: TUBB, TUBA1B, TUBB3, TUBB4A, MAP2 and NME7 – the latter is mutated in left-right reversal of the visceral organs. There were also two cortical regions where average thickness asymmetry was altered in left-handedness: on the postcentral gyrus and inferior occipital cortex, functionally annotated with hand sensorimotor and visual roles. These cortical thickness asymmetries were not heritable. Heritable surface area asymmetries of language-related regions may link the etiologies of hand preference and language, whereas non-heritable asymmetries of sensorimotor cortex may manifest as consequences of hand preference.

Auteurs Bordeaux Neurocampus