A model or hybrid network consisting of oscillatory cells interconnected by inhibitory and electrical synapses may express different stable activity patterns without any change of network topology or parameters, and switching between the patterns can be induced by specific transient signals. However, little is known of properties of such signals. In the present study, we employ numerical simulations of neural networks of different size composed of relaxation oscillators, to investigate switching between in-phase (IP) and anti-phase (AP) activity patterns. We show that the time windows of susceptibility to switching between the patterns are similar in 2-, 4- and 6-cell fully-connected networks. Moreover, in a network (N = 4, 6) expressing a given AP pattern, a stimulus with a given profile consisting of depolarizing and hyperpolarizing signals sent to different subpopulations of cells can evoke switching to another AP pattern. Interestingly, the resulting pattern encodes the profile of the switching stimulus. These results can be extended to different network architectures. Indeed, relaxation oscillators are not only models of cellular pacemakers, bursting or spiking, but are also analogous to firing-rate models of neural activity. We show that rules of switching similar to those found for relaxation oscillators apply to oscillating circuits of excitatory cells interconnected by electrical synapses and cross-inhibition. Our results suggest that incoming information, arriving in a proper time window, may be stored in an oscillatory network in the form of a specific spatio-temporal activity pattern which is expressed until new pertinent information arrives.